Notes

This document illustrates the preprocessing of the dataset visualized in this article on srf.ch.

SRF Data attaches great importance to transparent and reproducible data preprocessing and -analysis. SRF Data believes in the principles of open data but also open and reproducible methods. Third parties should be empowered to build on the work of SRF Data and to generate new analyses and applications.

R-Script & processed data

The preprocessing and analysis of the data was conducted in the R project for statistical computing. The RMarkdown script used to generate this document and all the resulting data can be downloaded under this link. Through executing main.Rmd, the herein described process can be reproduced and this document can be generated. In the course of this, data from the folder ìnput will be processed and results will be written to output.

Attention: Please set your working directory in the first code chunk!

GitHub

The code for the herein described process can also be freely downloaded from https://github.com/srfdata/2015-10-elections-list-apparentments. Criticism in the form of GitHub issues and pull requests are very welcome!

License

Creative Commons License
2015-10-elections-list-apparentments by SRF Data is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Exclusion of liability

The published information has been collated carefully, but no guarantee is offered of its completeness, correctness or up-to-date nature. No liability is accepted for damage or loss incurred from the use of this script or the information drawn from it. This exclusion of liability also applies to third-party content that is accessible via this offer.

Other projects

All code & data from SRF Data is available under http://srfdata.github.io.

Data description

Original data source

Description of output

The following sections describe the results of the data preprocessing as stored in the output folder.

output/parties.csv

Contains party classifications made by SRF Data with the help of political scientists, used throughout all projects related to elections.

Attribute Type Description
ID Integer Unique identifier
Abbr_* String Abbreviation in German (D), French (F), English (E), Romansh (R), Italian (I), respectively
Legend_* String Abbreviation, but with slightly more information, used for frontend purposes
Name_* String Full name
Sortorder Integer Used for frontend purposes solely
OLD_ID String “Official” ID as given in https://github.com/srfdata/2015-06-elections-partystrengths/blob/master/analysis/input/parteienstaerke_mod_2.xlsx (sheet “Parteien”), used for combining party strengths for party groupings

output/lv_2015.csv

Contains effects of list apparentments on the cantonal level, 2015, as derived from input/lv9515n.csv.

Attribute Type Description
year Integer Election year
canton String Official cantonal abbreviation
party String Contains the party name, but only if it belongs to a group in output/parties.csv (e.g. id == 8)
party_id Integer Party or party grouping, referencing ID in output/parties.csv
party_strength Double Party strength in percent
seats_with String Actual, resulting seats
seat_difference String seats_with - seats_without
seats_without String Seats that would have resulted without the possibility of list apparentments
list_id String The cantonal list the party was on in 2015

output/lv_2015_national.csv

Contains effects of list apparentments on the national level, 2015, as derived from input/nrwresultate_sim9515.xls.

Attribute Type Description
year Integer Election year
party String Contains the party name, but only if it belongs to a group in output/parties.csv (e.g. id == 8)
party_id Integer Party or party grouping, referencing ID in output/parties.csv
party_strength Double Party strength in percent
seats_with String Actual, resulting seats
seats_without String Seats that would have resulted without the possibility of list apparentments
seat_difference String seats_with - seats_without

output/lv_historical.csv

Contains effects of list apparentments on the cantonal level, 1995 - 2011, as derived from input/lv9511n.csv.

Attribute Type Description
year Integer Election year
canton String Official cantonal abbreviation
party String Contains the party name, but only if it belongs to a group in output/parties.csv (e.g. id == 8)
party_id Integer Party or party grouping, referencing ID in output/parties.csv
party_strength Double Party strength in percent
seats_with String Actual, resulting seats
seat_difference String seats_with - seats_without
seats_without String Seats that would have resulted without the possibility of list apparentments

output/lv_historical_national.csv

Contains effects of list apparentments on the national level, 1995 - 2011, as derived from input/nrwresultate_sim9515.xls.

Attribute Type Description
year Integer Election year
party String Contains the party name, but only if it belongs to a group in output/parties.csv (e.g. id == 8)
party_id Integer Party or party grouping, referencing ID in output/parties.csv
party_strength Double Party strength in percent
seats_with String Actual, resulting seats
seat_difference String seats_with - seats_without
seats_without String Seats that would have resulted without the possibility of list apparentments

Preparations

Define packages

# von https://mran.revolutionanalytics.com/web/packages/checkpoint/vignettes/using-checkpoint-with-knitr.html
cat("library(magrittr)
library(tidyr)
library(dplyr)
library(readxl)
library(ggplot2)", 
file = "manifest.R")
package_date <- "2015-08-01"

Install packages

if(!require(checkpoint)) {
  if(!require(devtools)){
    install.packages("devtools", repos = "http://cran.us.r-project.org")
    require(devtools)
  }
  devtools::install_github("checkpoint", username = "RevolutionAnalytics", ref = "v0.3.2", repos = "http://cran.us.r-project.org")
  require(checkpoint)
}
## Loading required package: checkpoint
## 
## checkpoint: Part of the Reproducible R Toolkit from Microsoft
## https://mran.microsoft.com/documents/rro/reproducibility/
if(!dir.exists("~/.checkpoint")){
  dir.create("~/.checkpoint")
}
checkpoint(snapshotDate = package_date, project = path_to_wd, verbose = T, scanForPackages = T, use.knitr = F)
## Scanning for packages used in this project
## rmarkdown files found and will not be parsed. Set use.knitr = TRUE
## - Discovered 6 packages
## All detected packages already installed
## checkpoint process complete
## ---
rm(package_date)

Load packages

source("manifest.R")
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:magrittr':
## 
##     extract
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
unlink("manifest.R")

Preprocessing

Basic data loading

The following comments are unfortunately in German

Daten in CSV umkonvertieren

# 1 Listenverbindungen in den Nationalratswahlen in den Jahren 1995-2011, nach Kantonen und Parteien

listenverbindungen_kantonal <- read.csv2(file = "input/lv9511n.csv", sep = ",", stringsAsFactors = F)
# Es gibt zwei Fehler in den kantonalen Daten, gleich hier beheben
listenverbindungen_kantonal[listenverbindungen_kantonal$party == "glp" & listenverbindungen_kantonal$year == 2011 & listenverbindungen_kantonal$kt == "TG",]$ap_s <- 1
listenverbindungen_kantonal[listenverbindungen_kantonal$party == "fdp" & listenverbindungen_kantonal$year == 2011 & listenverbindungen_kantonal$kt == "TG",]$ap_s <- -1

listenverbindungen_kantonal %<>% 
  mutate(vote = as.double(vote))
listenverbindungen_national <- read_excel(path = "input/nrwresultate_sim9515.xls")[1:158,]
# Es gibt zwei Fehler in den nationalen Daten, gleich hier beheben
listenverbindungen_national[listenverbindungen_national$year == 2011 & listenverbindungen_national$party == "GLP",]$ap_s <- 5
listenverbindungen_national[listenverbindungen_national$year == 2011 & listenverbindungen_national$party == "GLP",]$s_noap <- 7
listenverbindungen_national[listenverbindungen_national$year == 2011 & listenverbindungen_national$party == "FDP",]$ap_s <- -1
listenverbindungen_national[listenverbindungen_national$year == 2011 & listenverbindungen_national$party == "FDP",]$s_noap <- 30

# doublecheck
listenverbindungen_kantonal %>% group_by(id_kt) %>% 
  summarize(total_seats = sum(abs(ap_s))) %>% arrange(desc(total_seats))
## Source: local data frame [130 x 2]
## 
##     id_kt total_seats
## 1  BE1995           4
## 2  BE2003           4
## 3  FR1999           4
## 4  SG1995           4
## 5  ZH2003           4
## 6  ZH2007           4
## 7  AG1995           2
## 8  AG1999           2
## 9  AG2003           2
## 10 AG2007           2
## ..    ...         ...
# check that sum is always 100
rundungsfehler <- listenverbindungen_kantonal %>% 
  group_by(year, kt) %>% 
  summarize(total_vote = sum(vote)) %>% 
  ungroup() %>% 
  arrange(desc(total_vote))
# mostly ok

2015-Daten: Kantonal

listenverbindungen_kantonal_2015 <- read.csv2(file = "input/lv15n.csv", sep = ",", stringsAsFactors = F)

# welche sind LPS in den Bochsler-Daten? 
listenverbindungen_kantonal_2015 %>% 
  filter(party == "lps" & vote > 0)
##  [1] year        kt          party       id_kt       vote       
##  [6] seats       others_name ap_s        ap_i        kname      
## [11] s          
## <0 rows> (or 0-length row.names)
# Wikipedia: Die noch bestehenden kantonalen Parteien sind nun zusammen mit ihren freisinnigen Schwesterparteien Teil der neuen liberalen Bundespartei.
listenverbindungen_kantonal_2015 %<>% 
  select(year, kt, party, ap_s, s, ap_i, vote, others_name ) %>% 
  rename(party_bochsler = party, party_bochsler_description = others_name) %>% 
  mutate(party_bochsler = as.factor(party_bochsler))

# Bochsler-Daten: Welche "uebrige" haben Sitze gewonnen? 
listenverbindungen_kantonal_2015 %>% 
  filter(party_bochsler == "uebrige" & s > 0)
## [1] year                       kt                        
## [3] party_bochsler             ap_s                      
## [5] s                          ap_i                      
## [7] vote                       party_bochsler_description
## <0 rows> (or 0-length row.names)
listenverbindungen_kantonal_2015 %>%
  filter(party_bochsler == "uebrige" & ap_s != 0)
## [1] year                       kt                        
## [3] party_bochsler             ap_s                      
## [5] s                          ap_i                      
## [7] vote                       party_bochsler_description
## <0 rows> (or 0-length row.names)
# es handelt sich um die csp
  
## Plausibilitätschecks
# Gesamtsumme Sitze
sum(listenverbindungen_kantonal_2015$s, na.rm = T)
## [1] 200
# der Sitz der CSP im Kanton OW fehlt noch

# variablen transformieren
listenverbindungen_kantonal_2015 %<>% 
  mutate(canton = kt, list_id = ap_i, seats_with = s, seat_difference = ap_s, seats_without = seats_with - seat_difference, party_strength = as.numeric(vote), party_abbr = party_bochsler, party_id = NA, party = party_bochsler_description)

# unnötige variablen rausschmeissen
listenverbindungen_kantonal_2015 %<>%
  select(-ap_s, -s, -ap_i, -vote)
# LV brauchen wir noch für das Matching mit den übrigen

# Plausibilitätschecks 
# Summation zu 100%
as.data.frame(listenverbindungen_kantonal_2015 %>% 
  group_by(year, canton) %>% 
  summarize(total_vote = sum(party_strength)) %>% 
  ungroup() %>% 
  arrange(desc(total_vote)))
##    year canton total_vote
## 1  2015     GL        100
## 2  2015     SG        100
## 3  2015     AG        100
## 4  2015     NE        100
## 5  2015     FR        100
## 6  2015     VD        100
## 7  2015     BE        100
## 8  2015     GE        100
## 9  2015     SO        100
## 10 2015     OW        100
## 11 2015     UR        100
## 12 2015     ZG        100
## 13 2015     BL        100
## 14 2015     SH        100
## 15 2015     AI        100
## 16 2015     GR        100
## 17 2015     JU        100
## 18 2015     VS        100
## 19 2015     SZ        100
## 20 2015     BS        100
## 21 2015     TG        100
## 22 2015     AR        100
## 23 2015     ZH        100
## 24 2015     TI        100
## 25 2015     NW        100
## 26 2015     LU        100
# 200 Sitze
sum(listenverbindungen_kantonal_2015$seats_with)
## [1] 200
sum(listenverbindungen_kantonal_2015$seats_without)
## [1] 200
# party_id ermitteln

listenverbindungen_kantonal_2015$party_id <- 8
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "bdp",]$party_id <- 32
# listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "ldu",]$party_id <- 8
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "svp",]$party_id <- 4
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "cvp",]$party_id <- 2
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "fdp",]$party_id <- 1
# listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "fga",]$party_id <- 9
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "gps",]$party_id <- 13
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "sp",]$party_id <- 3
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "cspo",]$party_id <- 8
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "pda",]$party_id <- 9
# listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "fps",]$party_id <- 16
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "evp",]$party_id <- 7
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "sd",]$party_id <- 16
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "sol",]$party_id <- 9
# listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "lps",]$party_id <- 1
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "lega",]$party_id <- 18
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "edu",]$party_id <- 16
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "glp",]$party_id <- 31

listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "cspo",]$party <- "Karl Vogler (Christlichsoziale Partei Obwalden)"
listenverbindungen_kantonal_2015[listenverbindungen_kantonal_2015$party_abbr == "cspo",]$party_abbr <- "CSP"
## Warning in `[<-.factor`(`*tmp*`, iseq, value = "CSP"): invalid factor
## level, NA generated
# Abschluss
listenverbindungen_kantonal_2015 %<>% 
  select(year, canton, party, party_id, party_strength, seats_with, seats_without, seat_difference, list_id)

# speichern 
write.csv(listenverbindungen_kantonal_2015, file = "output/lv_2015.csv", na = "", row.names = F)
# 
# data <- read.csv("output/lv_2015.csv")
# fix(data)
# data[data$party_abbr == "AL" & data$canton == "ZH",]$party_strength <- data[data$party_abbr == "AL" & data$canton == "ZH",]$party_strength + data[data$party_abbr == "AL2" & data$canton == "ZH",]$party_strength
# 
# data %<>% filter(party_abbr != "AL2")
# 
# data %>% group_by(canton) %>% summarize(sum = sum(party_strength)) %>% as.data.frame()
# 
# write.csv(data, file = "output_for_vis/lv_2015.csv", na = "", row.names = F)

Historische Daten: Kantonal

lv_historisch <- listenverbindungen_kantonal
sum(lv_historisch$s)
## [1] 1000
# Summe sollte 800 sein
lv_historisch %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(s))
## Source: local data frame [5 x 2]
## 
##   year total_sitze
## 1 1995         200
## 2 1999         200
## 3 2003         200
## 4 2007         200
## 5 2011         200
# im Jahr 1995 ist die Summe nicht 200
as.data.frame(lv_historisch %>% 
  filter(year == 1995) %>% 
  group_by(kt) %>% 
  summarize(total_sitze = sum(s)) %>% 
  ungroup() %>% 
  arrange(desc(total_sitze)))
##    kt total_sitze
## 1  ZH          34
## 2  BE          27
## 3  VD          17
## 4  AG          15
## 5  SG          12
## 6  GE          11
## 7  LU          10
## 8  TI           8
## 9  BL           7
## 10 SO           7
## 11 VS           7
## 12 BS           6
## 13 FR           6
## 14 TG           6
## 15 GR           5
## 16 NE           5
## 17 SZ           3
## 18 ZG           3
## 19 AR           2
## 20 JU           2
## 21 SH           2
## 22 AI           1
## 23 GL           1
## 24 NW           1
## 25 OW           1
## 26 UR           1
# Zürich scheint einen zu viel zu haben
as.data.frame(lv_historisch %>% 
  filter(year == 1995 & kt == "ZH") %>% 
  group_by(party) %>% 
  summarize(total_sitze = sum(s)) %>% 
  ungroup() %>% 
  arrange(desc(total_sitze)))
##      party total_sitze
## 1       sp           9
## 2      svp           9
## 3      fdp           6
## 4      cvp           2
## 5      gps           2
## 6      ldu           2
## 7      evp           1
## 8      fga           1
## 9      fps           1
## 10      sd           1
## 11     csp           0
## 12     edu           0
## 13     glp           0
## 14    lega           0
## 15     lps           0
## 16     pda           0
## 17     sol           0
## 18 uebrige           0
# die FGA hat einen zu viel
# lv_historisch[lv_historisch$year == 1995 & lv_historisch$kt == "ZH" & lv_historisch$party == "fga" & lv_historisch$vote < 1,]$s <- 0
# BL ebenfalls
as.data.frame(lv_historisch %>% 
  filter(year == 1995 & kt == "BL") %>% 
  group_by(party) %>% 
  summarize(total_sitze = sum(s)) %>% 
  ungroup() %>% 
  arrange(desc(total_sitze)))
##      party total_sitze
## 1       sp           2
## 2      cvp           1
## 3      fdp           1
## 4      gps           1
## 5       sd           1
## 6      svp           1
## 7      csp           0
## 8      edu           0
## 9      evp           0
## 10     fga           0
## 11     fps           0
## 12     glp           0
## 13     ldu           0
## 14    lega           0
## 15     lps           0
## 16     pda           0
## 17     sol           0
## 18 uebrige           0
# die FDP hat einen zu viel
# lv_historisch[lv_historisch$year == 1995 & lv_historisch$kt == "BL" & lv_historisch$party == "fdp"  & lv_historisch$vote < 2,]$s <- 0

sum(lv_historisch$s)
## [1] 1000
# nun ist es gut

lv_historisch %<>% 
  group_by(year, kt, party) %>% 
  summarize(seats_with = sum(s), seat_difference = sum(ap_s)) %>% 
  ungroup() %>% 
  mutate(seats_without = seats_with - seat_difference)

sum(lv_historisch$seats_without)
## [1] 1000
# die entfernen, die weder mit oder ohne LV keine sitze gemacht hätten
lv_historisch %<>% 
  filter(seats_with > 0 | seats_without > 0)
# transformieren
lv_historisch %<>%
  rename(canton = kt) %>% 
  mutate(party_abbr = party, party = NA, party_id = NA)

unique(lv_historisch$party_abbr)
##  [1] "cvp"     "fdp"     "fps"     "gps"     "ldu"     "sp"      "svp"    
##  [8] "edu"     "evp"     "fga"     "sd"      "lps"     "csp"     "pda"    
## [15] "lega"    "sol"     "glp"     "bdp"     "mcr"     "uebrige"
# party_id reinholen 

lv_historisch[lv_historisch$party_abbr == "bdp",]$party_id <- 32
lv_historisch[lv_historisch$party_abbr == "ldu",]$party_id <- 8
lv_historisch[lv_historisch$party_abbr == "svp",]$party_id <- 4
lv_historisch[lv_historisch$party_abbr == "cvp",]$party_id <- 2
lv_historisch[lv_historisch$party_abbr == "fps",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "fdp",]$party_id <- 1
lv_historisch[lv_historisch$party_abbr == "fga",]$party_id <- 9
lv_historisch[lv_historisch$party_abbr == "gps",]$party_id <- 13
lv_historisch[lv_historisch$party_abbr == "sp",]$party_id <- 3
lv_historisch[lv_historisch$party_abbr == "csp",]$party_id <- 8
lv_historisch[lv_historisch$party_abbr == "pda",]$party_id <- 9
lv_historisch[lv_historisch$party_abbr == "fps",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "evp",]$party_id <- 7
lv_historisch[lv_historisch$party_abbr == "sd",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "sol",]$party_id <- 9
lv_historisch[lv_historisch$party_abbr == "lps",]$party_id <- 1
lv_historisch[lv_historisch$party_abbr == "lega",]$party_id <- 18
lv_historisch[lv_historisch$party_abbr == "edu",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "glp",]$party_id <- 31
lv_historisch[lv_historisch$party_abbr == "uebrige",]$party_id <- 99
lv_historisch[lv_historisch$party_abbr == "mcr",]$party_id <- 8

# LPS zu FDP rechnen
lv_historisch %<>%
  mutate(lpsfdp = ifelse(party_abbr == "fdp" | party_abbr == "lps", "fdplps", party_abbr))


lv_historisch %<>% 
  group_by(lpsfdp, year, canton) %>% 
  summarise(party = first(party),  party_abbr = first(party_abbr), party_id = first(party_id), seats_with = sum(seats_with), seat_difference = sum(seat_difference), seats_without = sum(seats_without)) %>% 
  ungroup() %>% 
  select(-lpsfdp)

lv_historisch %>% 
  filter(party_abbr == "lps")
## Source: local data frame [0 x 8]
## 
## Variables not shown: year (int), canton (chr), party (lgl), party_abbr
##   (chr), party_id (dbl), seats_with (int), seat_difference (dbl),
##   seats_without (dbl)
# Plausibilitätschecks

# 200 Sitze
sum(lv_historisch$seats_with)
## [1] 1000
sum(lv_historisch$seats_without)
## [1] 1000
sum(lv_historisch$seat_difference)
## [1] 0
# party_id ermitteln

write.csv(lv_historisch, file = "output/lv_historical.csv", na = "", row.names = F)

2015-Daten: national

# Wie viele Sitze gehen an die CSP? 
listenverbindungen_national %>% 
    filter(party == "CSP")
## Source: local data frame [6 x 9]
## 
##   year party s ap_s s_noap apdummy   voteap   v     ap_np
## 1 1995   CSP 1    1      0       2 22.20000 0.3 0.1538462
## 2 1999   CSP 1    1      0       3 34.40000 0.4 0.2692308
## 3 2003   CSP 1    1      0       1 38.86719 0.4 0.1538462
## 4 2007   CSP 1    1      0       3 29.92079 0.4 0.4230769
## 5 2011   CSP 0    0      0       4 26.70000 0.3 0.3461539
## 6 2015   CSP 0    0      0       2       NA  NA        NA
# Problem: Karl Vogler wird 2015 nicht als CSP aufgeführt, sondern bei den Übrigen, auch in den BFS-Daten

# In den kantonalen Daten für 2015 wird er jedoch als CSP aufgeführt, jedoch ist OW sowieso ein Majorzkanton
listenverbindungen2015_national <- listenverbindungen_national %>% 
    filter(year == 2015) %>% 
    mutate(party = tolower(party), party_abbr = party, party = NA, party_strength = v, seats_with = s, seats_without = s_noap, seat_difference = ap_s, canton = "CH", party_id = NA, list_id = NA) %>% 
    select(-apdummy, -voteap)


# Plausibilitätschecks
# Summiert zu 100%
sum(listenverbindungen2015_national$v)
## [1] NA
# Nicht genau 100%
# Originaldaten matchen, Quelle: BFS
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "svp",]$party_strength <- 29.4
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "cvp",]$party_strength <- 11.6
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "fdp",]$party_strength <- 16.4
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "gps",]$party_strength <- 7.1
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sp",]$party_strength <- 18.8
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "csp",]$party_strength <- 0.2
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "cspo",]$party_strength <- 0
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "pda",]$party_strength <- 0.4
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "evp",]$party_strength <- 1.9
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sd",]$party_strength <- 0.1
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sol",]$party_strength <-0.5

listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "lega",]$party_strength <- 1.0
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "edu",]$party_strength <- 1.2
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "glp",]$party_strength <- 4.6
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "uebrige",]$party_strength <- 2.4
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "bdp",]$party_strength <- 4.1
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "mcr",]$party_strength <- 0.3


# nochmals überprüfen
sum(listenverbindungen2015_national$party_strength, na.rm = T)
## [1] 100
# 200 Sitze
sum(listenverbindungen2015_national$seats_with)
## [1] 200
sum(listenverbindungen2015_national$seats_without)
## [1] 200
# solche mit party_strength == 0 entfernen
listenverbindungen2015_national %<>% filter(party_strength > 0)

listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "uebrige",]$seats_with <- 1
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "uebrige",]$seats_without <- 1

sum(listenverbindungen2015_national$party_strength)
## [1] 100
sum(listenverbindungen2015_national$seats_with)
## [1] 200
sum(listenverbindungen2015_national$seats_without)
## [1] 200
sum(listenverbindungen2015_national$seat_difference)
## [1] 0
# 

listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "bdp",]$party_id <- 32
# listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "ldu",]$party_id <- 8
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "svp",]$party_id <- 4
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "cvp",]$party_id <- 2
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "fdp",]$party_id <- 1
# listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "fga",]$party_id <- 9
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "gps",]$party_id <- 13
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sp",]$party_id <- 3
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "pda",]$party_id <- 9
# listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "fps",]$party_id <- 16
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "evp",]$party_id <- 7
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sd",]$party_id <- 16
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sol",]$party_id <- 9
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "lega",]$party_id <- 18
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "edu",]$party_id <- 16
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "glp",]$party_id <- 31
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "csp",]$party_id <- 8
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "mcr",]$party_id <- 8
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "uebrige",]$party_id <- 99

# Volle Namen hinzufügen
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sd",]$party <- "SD"
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "sol",]$party <- "Sol."
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "edu",]$party <- "EDU"
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "csp",]$party <- "CSP"
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "mcr",]$party <- "MCR"
listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "pda",]$party <- "PdA"
# listenverbindungen2015_national[listenverbindungen2015_national$party_abbr == "uebrige",]$party <- ""
# select variables
listenverbindungen2015_national %<>% select(year, canton, party, party_id, party_strength, seats_with, seats_without, seat_difference)

write.csv(listenverbindungen2015_national,file = "output/lv_2015_national.csv", na = "", row.names = F)

Historische Daten: national

# Plausibilitätscheck
listenverbindungen_national %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(s))
## Source: local data frame [6 x 2]
## 
##   year total_sitze
## 1 1995         200
## 2 1999         200
## 3 2003         200
## 4 2007         200
## 5 2011         200
## 6 2015         200
# gleiches Problem wie bei kantonalen Daten: 1995 hat zwei Sitze zu viel
lv_historisch <- listenverbindungen_national %>% 
  filter(year < 2015)
# die FGA hat einen zu viel
lv_historisch[lv_historisch$year == 1995 & lv_historisch$party == "FGA",]$s <- 2
lv_historisch[lv_historisch$year == 1995 & lv_historisch$party == "FGA",]$ap_s <- 1
lv_historisch[lv_historisch$year == 1995 & lv_historisch$party == "FGA",]$s_noap <- 1
# die FDP hat einen zu viel
lv_historisch[lv_historisch$year == 1995 & lv_historisch$party == "FDP",]$s <- 45
lv_historisch[lv_historisch$year == 1995 & lv_historisch$party == "FDP",]$s_noap <- 48

lv_historisch %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(s))
## Source: local data frame [5 x 2]
## 
##   year total_sitze
## 1 1995         200
## 2 1999         200
## 3 2003         200
## 4 2007         200
## 5 2011         200
# Plausibilitätscheck
lv_historisch %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(ap_s))
## Source: local data frame [5 x 2]
## 
##   year total_sitze
## 1 1995           0
## 2 1999           0
## 3 2003           0
## 4 2007           0
## 5 2011           0
# gibt überall null, gut

# nur die nehmen, die mindestens einen Sitz gemacht haben
lv_historisch %<>%
    filter(s > 0)

lv_historisch %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(s))
## Source: local data frame [5 x 2]
## 
##   year total_sitze
## 1 1995         200
## 2 1999         200
## 3 2003         200
## 4 2007         200
## 5 2011         200
lv_historisch %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(s_noap))
## Source: local data frame [5 x 2]
## 
##   year total_sitze
## 1 1995         200
## 2 1999         200
## 3 2003         200
## 4 2007         200
## 5 2011         200
lv_historisch %>% 
  group_by(year) %>% 
  summarize(total_sitze = sum(ap_s))
## Source: local data frame [5 x 2]
## 
##   year total_sitze
## 1 1995           0
## 2 1999           0
## 3 2003           0
## 4 2007           0
## 5 2011           0
# gut

# variablen transformieren
lv_historisch %<>% 
    mutate(party = tolower(party), party_abbr = party, party = NA, party_strength = v, seats_with = s, seats_without = s_noap, seat_difference = ap_s, canton = "CH", party_id = NA, list_id = NA) %>% 
    select(-apdummy, -voteap)

lv_historisch[lv_historisch$party_abbr == "ldu",]$party_id <- 8
lv_historisch[lv_historisch$party_abbr == "svp",]$party_id <- 4
lv_historisch[lv_historisch$party_abbr == "cvp",]$party_id <- 2
lv_historisch[lv_historisch$party_abbr == "fps",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "fdp",]$party_id <- 1
lv_historisch[lv_historisch$party_abbr == "fga",]$party_id <- 9
lv_historisch[lv_historisch$party_abbr == "gps",]$party_id <- 13
lv_historisch[lv_historisch$party_abbr == "sp",]$party_id <- 3
lv_historisch[lv_historisch$party_abbr == "csp",]$party_id <- 8
lv_historisch[lv_historisch$party_abbr == "pda",]$party_id <- 9
lv_historisch[lv_historisch$party_abbr == "fps",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "evp",]$party_id <- 7
lv_historisch[lv_historisch$party_abbr == "sd",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "sol",]$party_id <- 9
lv_historisch[lv_historisch$party_abbr == "lps",]$party_id <- 1
lv_historisch[lv_historisch$party_abbr == "lega",]$party_id <- 18
lv_historisch[lv_historisch$party_abbr == "edu",]$party_id <- 16
lv_historisch[lv_historisch$party_abbr == "glp",]$party_id <- 31
lv_historisch[lv_historisch$party_abbr == "uebrige",]$party_id <- 99
lv_historisch[lv_historisch$party_abbr == "bdp",]$party_id <- 32
lv_historisch[lv_historisch$party_abbr == "mcr",]$party_id <- 8


# select variables
lv_historisch %<>% select(year, canton, party, seats_with, seat_difference, seats_without, party_abbr, party_id)

# LPS zu FDP rechnen
lv_historisch %<>%
  mutate(lpsfdp = ifelse(party_abbr == "fdp" | party_abbr == "lps", "fdplps", party_abbr))


lv_historisch %<>% 
  group_by(lpsfdp, year, canton) %>% 
  summarise(party = first(party), party_id = first(party_id),seats_with = sum(seats_with), seat_difference = sum(seat_difference), seats_without = sum(seats_without)) %>% 
  ungroup() %>% 
  select(-lpsfdp)

# lv_historisch %>% 
#   filter(party_abbr == "lps") 
# Plausibilitätschecks

# 1000 Sitze
sum(lv_historisch$seats_with)
## [1] 1000
sum(lv_historisch$seats_without)
## [1] 1000
sum(lv_historisch$seat_difference)
## [1] 0
write.csv(lv_historisch,file = "output/lv_historical_national.csv", na = "", row.names = F)